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Abstract
The stability of striped magnetic phases in films of La1−xAx MnO3 perovskites is investigated.
A variational analysis is developed for different film thicknesses at fixed hole density (x = 0.3)
and the competition among magnetic phases as a function of the transfer integral and the
temperature is analyzed. The stabilization of an in-plane striped magnetic phase is observed
with reducing the film thickness at low temperatures below the metal–insulator transition
temperature. Within the adopted variational scheme, treating perturbatively the residual
electron–phonon interaction, the dependence of the in-plane resistivity on temperature for
different thicknesses is calculated. At low temperatures, due to the striped magnetic phase,
the resistivity shows an important in-plane anisotropy. The obtained results are found to be
consistent with experiments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The perovskite oxides La1−xAx MnO3 (A stands for a divalent
alkali element such as Sr or Ca) have been studied intensively
since the discovery of ‘colossal’ magneto-resistance (CMR)
in thin films [1]. Dramatic changes in electron and
magnetic properties are found at temperatures around the
combined ferromagnetic–paramagnetic and metal–insulator
(MI) transitions. The ferromagnetic phase is usually explained
by introducing the double-exchange mechanism [2], in which
hopping of an outer shell electron from a Mn3+ to a Mn4+
site is favored by a parallel alignment of the core spins. In
addition to the double-exchange term that promotes hopping
of the carriers, a significant interaction between electrons
and lattice distortions plays a non-negligible role in these
compounds [3–7]. Actually, for the Mn3+ site, with three
electrons in the energetically lower spin triplet state t2g and
the mobile electron in the higher doublet eg, a Jahn–Teller
distortion of the oxygen octahedron can lead to splitting of the
doublet and the trapping of the charge carriers in a polaronic
state.

The physics of these compounds is very rich and even
more complex in the case of films, where the role of vertical
confinement, strain and disorder is crucial [8, 9]. In particular,

the interface between the films and the substrate can play
an important role, giving rise to phase separated regions
with different magnetic structures and affecting the transport
properties especially in very thin films. Recently, a number
of experimental observations in thin films have been reported
showing an unexpected strong anisotropy in the in-plane
properties [10–12] below the MI transition1. For very thin films
(thickness < 100 Å) of La1−xSrx MnO3 (LSMO), grown on
different substrates, the resistance curves R(T ), along the ab
crystallographic axes, have been found remarkably different.
In particular along one of the crystallographic directions the
R(T ) curve exhibits a ‘bump’ at temperatures around 120 K
while along the other one the behavior of the resistivity appears
very close to the one expected for thicker films and bulk
samples: metallic up to 320 K. On the other hand, for thick
(>400 Å) films, the resistance curves in different directions of
the ab-plane did not show sizable differences. The observed
anisotropy in the resistance has been attributed to the substrate
interface that can exhibit step-like terraces [12, 10]. However,

1 Above the MI transition temperature the LSMO films, regardless of their
thickness and substrate, do not exhibit any anisotropy in the ab-plane. In the
insulating phase the transport is dominated by the polaron formation triggered
by the paramagnetic phase and by disorder that restores the a–b transport
isotropy.
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Figure 1. The picture schematically shows the magnetic-stripe order
corresponding to in-plane anisotropic magnetic solutions.

the persistence of the effect with changing the substrate makes
this suggestion doubtful.

In this paper, we show that an alternative explanation
is possible based on the formation of magnetic-stripe phase
(MS). We discuss the stability of such a phase without
assuming any extrinsic effect at the interface with the
substrate. As we will show, indeed, a MS phase can
form. The magnetic physical origin of the observed
anisotropy stems from several experimental observations that
suggest the existence of a ‘dead layer’, at the interface
with the substrate, exhibiting an insulating non-ferromagnetic
behavior [13, 14]. A further insight into the problem comes
from the well-known observation that these compounds exhibit
a strong tendency towards ferromagnetic and antiferromagnetic
nanoscopic phase separation [15, 16]. Finally, it is worth
noticing that the possible existence of extrinsic effects can
work as a further stabilizing factor for the magnetic phase we
discuss.

In MS phases we assume that the order of the t2g

spin is such that ferromagnetic stripes alternate with the
opposite magnetization (see figure 1). The transverse
size of each stripe is a free parameter to be determined
by energetic considerations. The numerical comparison
with the isotropic phases (ferromagnetic (FM) and G-type
antiferromagnetic (AFM) phases) allows us to build up a
phase diagram in the plane defined by the transfer integral
(hopping amplitude) between nearest-neighbor sites, t , and
temperature, T . In our analysis the hopping amplitude plays
an important role since its variations are able to model the
presence of strain in the film [8]. Phase diagrams are obtained
for different thicknesses (figures 2 and 3). We have observed
that the stability region for the anisotropic phase moves slightly
towards larger values of t with increasing film thickness and
reaches a saturation limit around 100 planes. At the same
time, for small values of T the magnetic-stripe phase becomes
wider. We have also calculated the film resistivity as a
function of the temperature at fixed values of hopping, for
different sizes, recovering the in-plane anisotropy observed
in the experiments. The anisotropy is obtained when the
transition from ferromagnetic to magnetic-stripe phase takes
place.

In section 2 the model is introduced and the adopted
variational approach reviewed. In section 3 the behavior of
the resistivity in the ab-plane as a function of temperature is
reported and discussed. Finally, in section 4, the conclusions
are reported.

2. The model and the variational approach

We adopt the so-called single orbital approximation for
manganite. This model, qualitatively accurate for x <

0.5, describes the dynamics of the eg electrons subjected
to the double-exchange mechanism and coupled to the
lattice distortions. It also takes into account super-exchange
interaction between neighboring localized t2g electrons. The
coupling to longitudinal optical phonons arises from the Jahn–
Teller effect that splits the eg double degeneracy [17]. Then the
Hamiltonian reads

H = −t
∑

i,�δ

(
Si,i+�δ

0 + 1/2

2S + 1

)
c†

i ci+�δ + ω0

∑

i

a†
i ai

+ gω0

∑

i

c†
i ci(ai + a†

i )

+ ε

2

∑

i,�δ
�Si · �Si+�δ − μ

∑

i

c†
i ci . (1)

Here t is the transfer integral of electrons occupying eg orbitals

between nearest-neighbor (nn) sites, Si,i+�δ
0 is the total spin of

the subsystem consisting of two localized spins on nn sites
and the conduction electron, �Si is the spin of the t2g core
states (S = 3/2) and c†

i (ci) creates (destroys) an electron with
spin parallel to the ionic spin at the i th site in the eg orbital.
The coordination vector �δ connects nn sites. The first term
of the Hamiltonian describes the double-exchange mechanism
in the limit where the intra-atomic exchange integral J is far
larger than the transfer integral t . Furthermore in equation (1)
ω0 denotes the frequency of the local optical phonon mode,
a†

i (ai) is the creation (annihilation) phonon operator at the
site i , the dimensionless parameter g indicates the strength of
the electron–phonon interaction in the Holstein model [18],
ε represents the antiferromagnetic super-exchange coupling
between two nn t2g spins and μ is the chemical potential.
The hopping of electrons is supposed to take place between
the equivalent nn sites of a simple cubic lattice separated by
the distance |n − n′| = a. The units are such that the
Planck constant h̄ = 1, the Boltzmann constant kB = 1
and the lattice parameter a = 1. In order to treat the
electron–phonon interaction variationally, we use a scheme
already proposed in a similar context [19] based on a modified
Lang–Firsov canonical transformation and the Bogoliubov
inequality [20, 21]. The latter allows us to fix an upper limit
for the free energy F :

F � Ftest + 〈H̃ − Htest〉t , (2)

where Ftest and Htest are the free energy and the Hamiltonian
corresponding to the model that has been assumed as the
ansatz. The symbol 〈 〉t indicates a thermodynamic average
performed by using the test Hamiltonian.

Following [17], we choose Htest in such a way that
electron, phonon and spin degrees of freedom are not
interacting:

Htest = H el
test + ω0

∑

i

a†
i ai

+ Nω0g2(1 − x)2(1 − f )2 − gsμB

∑

i

�heff · �Si . (3)
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Here N = Nx Ny Nz is total number of the lattice sites, gs is the
dimensionless electron spin factor (gs � 2) and μB is the Bohr
magneton. Furthermore, f and heff represent, respectively,
the polaron localization parameter and the effective molecular
magnetic field that are determined by the variational approach.
In the test Hamiltonian (3), H el

test reads

H el
test = −te−ST

∑

i,�δ
γ�δc†

i ci+�δ − μeff

∑

i

c†
i ci , (4)

where the factor e−ST controls the band renormalization due to
the polaron formation and γ�δ indicates the thermal average of
the double-exchange spin operator

γ�δ =
〈(

Si,i+�δ
0 + 1/2

2S + 1

)〉

t

, (5)

that depends on the relative orientation of the t2g spin localized
on (nn) sites. Furthermore, μeff represents the effective
chemical potential. From the inequality (2) we obtain the
variational free energy for a single site:

F

N
= f el

test + T log (1 − e−βω0 ) + ω0g2(1 − f )2(1 − x)2

− T log νS + f ord
test + TλmS, (6)

where f el
test represents the electronic contribution to the free

energy and f ord
test depends on the magnetic order of the system.

Both will be discussed in some detail in the following. In
equation (6) β is the inverse of the temperature, νS is the
partition function of the localized spins, λ is a dimensionless
variational parameter proportional to the effective magnetic
field.

In order to calculate f el
test, we need to know the energy

spectrum of Htest. In particular we have to calculate the
associated electronic eigenvalues. This calculation is carried
out by diagonalizing the electronic contribution to the test
Hamiltonian. For MS solutions the derivation of the electron
dispersion relation has to take into account the periodic
nature of the solution. Actually, this solution introduces a
positional dependence of the double-exchange factor that, in
turn, modulates the effective transfer integral. In order to fix
the ideas, we assume the x-axis as the direction along which
the MS alternate (a-direction). Assuming that the transverse
width of a single stripe is L, the corresponding dimension of
the magnetic unit cell will be (2L, 1, 1). As mentioned above,
we need to diagonalize the electronic part of Htest

H el
test|kxkykz, α〉 = ξ(kx, ky, kz, α)|kx kykz, α〉. (7)

Here kx, ky, kz indicate the wavevectors of the magnetic
lattice, α is the index of the magnetic unit cell and
ξ(kx, ky, kz, α) the electronic dispersion. In the ab-plane, we
employ periodic boundary conditions. On the other hand,
the finite size of the film is taken into account considering
the system made of a finite number of planes and imposing
open boundary conditions along the out-of-plane direction of
growth [8]. The eigenvalue equation (7) with the boundary

conditions mentioned above is equivalent to diagonalizing the
following matrix 2L × 2L

⎛

⎜⎜⎜⎝

D(ky, kz) F · · · Ee−i2Lkx

F D(ky, kz) · · · 0
...

...
. . .

...

Eei2Lkx 0 · · · D(ky, kz)

⎞

⎟⎟⎟⎠ ,

where
F = −te−ST γδy E = −te−ST γδx (8)

represent the effective transfer integrals (5) for nearest-
neighboring t2g spin aligned and anti-aligned, respectively,
while

D(ky, kz) = 2F(cos(ky) + cos(kz)) (9)

represents the partial dispersion relation connected to
directions where the t2g spin are aligned. The electron free
energy for a generic solution reads

f el
test = − T

(2π)2 Nz

×
∑

kz

∑

α

∫ π
2L

− π
2L

dkx

∫ π

−π

dky log (1 + e−βξ(k,α)). (10)

In equation (10) Nz is the number of planes in the z direction.
We have analyzed the behavior of the MS solutions with

different transverse widths L. In particular, L = 1 has been
compared with L = 2 and 3 (this last case is sketched in
figure 1). In every case, in the magnetic super-cell, we stress
that there is only one antiferromagnetic bond along the x-axis.
The solutions differ from each other for the number of the
ferromagnetic bonds: 0 for L = 1, 2 for L = 2, 4 for L = 3.
In the parameter range where the antiferromagnetic solutions
are favored (smaller t), the solution with L = 1 becomes
more stable in comparison with MS phases characterized by
larger values of L. On the contrary, in the parameter range
where ferromagnetic solutions are favored (larger t), phases
with larger value of L have lower energies with respect to
the case L = 1. However, in this case, the phases with L
larger than 1 always have energies higher than those of the
homogeneous ferromagnetic phase by varying the parameter
hopping t , temperature T and number of planes Nz in the z
direction. Therefore, the most stable solution, among the MS
ones, corresponds to that with the minimal transverse width of
the stripes (L = 1).2 For this magnetic order we can exhibit
the electronic band in a closed form:

ξk = E cos(kx) + F cos(ky) + F cos(kz) − μeff. (11)

For L = 1 we obtain also a simple compact form for f ord
test :

f ord
test =

(
±3 − 1

Nz

)
εS2m2

S, (12)

2 In the case L = 1 the MS phase reduces to the so-called A-type AFM phase.
This is the magnetic configuration closest to the homogeneous FM phase that
is stabilized for thicker films. Different magnetic configurations like C-type
AFM have higher energies at x = 0.3 [22].
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Figure 2. Phase diagram in the hopping–temperature plane for
Nz = 2 at fixed hole density (x = 0.3), corresponding to g = 2 and
ε = 0.05ω0. PM means paramagnetic metal, FM ferromagnetic
metal, G-AFM G-type antiferromagnetic metal and finally MS
indicates the magnetic-stripe solution. The transfer integral t and the
temperature T are expressed in units of ω0.

where the top and bottom signs hold, respectively, for the
ferromagnetic and antiferromagnetic solutions. While for the
magnetic-stripe solution this becomes

f ord
test =

(
1 − 1

Nz

)
εS2m2

S . (13)

In our study an important role is played by the hopping
amplitude. Actually, the change of the hopping amplitude is
able to trigger the stabilization of the MS phase. It is well
known that there is a close connection between t and the biaxial
strain due to the substrate. It has been carefully shown [10, 11]
that in an epitaxial thin film of La1−xCax MnO3, grown on
substrates with significant tensile lattice mismatch, the in-plane
parameter increases while the out-of-plane lattice constant is
reduced. Similar results are also reported in [12], where
the out-of-plane lattice parameter, c, in an LSMO epitaxial
thin film was measured as a function of the film thickness
showing a reduction of c for thinner films. These results
suggest that when the film’s thickness is smaller than 400 Å
some tensile strain is present in the ab-plane. Consequently,
the in-plane parameter increases and the hopping amplitude
decreases. Summarizing, our conjecture is that the reduction
of the thickness drives a reduction of the transfer integral.

In figure 2 we show the hopping amplitude–temperature
phase diagram for the case of Nz = 2. It is clear that the
anisotropic phase with (L = 1) stabilizes in a wide region
between antiferromagnetic and ferromagnetic phases. The
existence of the MS phase can be understood as a reasonable
compromise between the two homogeneous phases that at their
interface exhibit a higher energy. Furthermore, the phase
separation between magnetically ordered and paramagnetic
phases is not modified by the presence of the MS phase,
suggesting that the MI transition (driven by the ferromagnetic–
paramagnetic (FM–PM) transition) is not modified by the
stabilization of the MS phase. It is also notable that the
re-entrant shape of the stability region for the MS phase
determines, for suitable values of hopping amplitude t , an
interesting sequence of order–order transition: FM �→ MS and
MS �→ FM. Finally, we would emphasize that our numerical
results, for the set of parameters used in this work and

Figure 3. Comparison among the phase diagrams corresponding to
different thicknesses: Nz = 5 (full circles, green), Nz = 10 (full
squares, blue) and Nz = 100 (full triangles, red). PM means
paramagnetic metal, FM ferromagnetic metal, G-AFM G-type
antiferromagnetic metal and finally MS indicates the magnetic-stripe
solution. The transfer integral t and the temperature T are expressed
in units of ω0.

suitable for LSMO [12], provide itinerant wavefunctions for
the electrons. The mass renormalization, due to the electron–
phonon coupling, is not very large and we do not see any
polaron self-trapping in the magnetically ordered phases.

Moreover we have studied the stability of the MS phase
(see figure 3) for different numbers of planes and we have
found that the MS phase moves slightly towards larger t values
when the number of layers increases, saturating at around 100
layers. We also observe that, at very low temperatures, the
range of hopping, where the MS solution stabilizes, decreases
as the number of layers increases.

It is worth noticing that, starting from a value of the
hopping amplitude corresponding to the region where FM
stabilizes, the MS phase stabilizes, reducing the hopping
amplitude. In our numerical results the extent of reduction
of hopping amplitude that leads to transition FM �→ MS is
compatible to the typical extent of in-plane lattice parameter
caused by tensile strain. We end this section with a general
remark on the anisotropy observed in thin films of LSMO
grown on different substrates. As a matter of fact, for suitable
values of hopping, where the MS stabilizes, we have shown
that an anisotropic behavior in the in-plane properties of the
film occurs. How can this be linked to the experimental
data? As already mentioned, for epitaxial thin film coherently
strained by in-plane tensile strain and for thickness such
that the mismatch causes an increase of the in-plane lattice
parameter, we expect a decrease of the effective hopping
amplitude. Actually, even for moderate compressive strain,
a decrease of the c-axis has been observed in those very thin
films exhibiting anisotropic behavior. This suggests to us
that, also in this case, the effective hopping amplitude could
decrease.

3. Resistivity: in-plane anisotropy

In order to show that the stabilization of the MS phase can,
indeed, lead to the anisotropy observed experimentally we
calculate, in this section, the resistivity for temperatures lower
than the FM �→ PM transition.

4
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It is well known that the resistivity is given by the inverse
of the ω �→ 0 limit of the real part of σα,α(ω) that is related to
the current–current correlation function, �ret

α,α(ω), by

Re σα,α(ω) = − Im �ret
α,α(ω)

ω
. (14)

Therefore our problem reduces to evaluating the current–
current correlation function. Following the scheme introduced
in [17] and limiting our analysis only to the coherent
contribution of the conductivity, it is possible to show that, in
Matsubara frequencies, �coh

α,α(iωn) becomes

�coh
α,α(iωn) = 4e2t2e−2ST

(
1

(2π)2 Nz

)
γ 2

δα

∑

kz

∫ π

−π

dkx

×
∫ π

−π

dky sin2(kα)

∫ β

0
eiωnτ G̃(k,−τ )G̃(k, τ ), (15)

where the index α refers to one of the two in-plane directions.
We stress that in our approach � depends on γδα

defined
in equation (5). The restriction to coherent processes for
the current–current correlation function is justified at low
temperatures where the multi-phonon in-coherent contribution
is expected not to play a main role. We remember that, below
the FM �→ PM critical temperature, our variational analysis
does not support the existence of phonon induced localization
for the charge carriers that is, usually, associated with the
incoherent transport. On the contrary, the charged electrons
have an itinerant nature both in FM and MS phases. The
situation changes in the high-temperature paramagnetic phase
where the formation of small polarons is favored, giving rise to
an insulating phase due to the cooperative effect of disorder.

Making the analytic continuation iωn → ω + iδ in (15)
and by using equation (14), it is possible to get the conductivity
tensor and, hence, the in-plane resistivity, both along the stripes
and perpendicular to them. However, in order to calculate
the current–current correlation function (equation (15)) we still
need a reasonable approximation for G̃. Following [17] again,
the Green’s function can be carried out using the Lehmann
representation

G̃(k, iωn) =
∫ +∞

−∞
dω

2π

Ã(k, ω)

iωn − ω
(16)

and assuming for the spectral function Ã

Ã(k, ω) = �(k)

[�(k)]2/4 + (ω − ξk)2,
(17)

with �(k) corresponding to the itinerant polaron scattering
rate. Due to the finite size along the z-axis, the contribution
of the single phonon [19] to the scattering rate �(k) reads

�1−phon(k) =
∑

k′
z

[
t2e−2ST Cord(kz, k ′

z)I1(s) sinh

(
βω0

2

)

+ g2ω2
0(1 − f )2

]
h(k, k ′

z). (18)

In equation (18) the dependence on magnetic solution is
contained in the factor

Cord(kz, k ′
z) = 4(γ 2

δx
+ γ 2

δy
+ γ 2

δz
)�1(kz, k ′

z)

+ (4γ 2
δx

+ 4γ 2
δy

+ 2γ 2
δz
)�2(kz, k ′

z), (19)

Figure 4. Resistivity versus temperature in the ab-plane for a
five-layer thick film: ρxx (full line, red) and ρyy (dashed line, green)
corresponding to g = 2 and ε = 0.05ω0 for a fixed value of hopping
amplitude t = 2.15ω0. The resistivity is expressed in units of e2

ah̄ and
T in units of ω0. In the inset the phase diagram (T –t), corresponding
to five layers, is shown.

where �1(kz, k ′
z) and �2(kz, k ′

z) are given by

�1(kz, k ′
z) =

Nz−1∑

l=2

φ2(lkz)φ
2(lk ′

z)

�2(kz, k ′
z) = φ2(kz)φ

2(k ′
z) + φ2(Nzkz)φ

2(Nzk ′
z)

(20)

and φ(lkz) represents the projection of the electron eigenstates
of the test Hamiltonian along the z-axis [8]. Moreover h(k, k ′

z)

is given by

h(k, k ′
z) = 2πe−ST g(k ′

z)[1 + 2nB(ω0)

+ nF(ω0 + ξk) − nF(ξk − ω0)], (21)

where nB and nF indicate boson and fermion average
occupation numbers, respectively. Furthermore g(k ′

z) is
the constant density of states for fixed k ′

z , while I1(s)
is the modified Bessel function calculated for s =
2 f 2g2[nB(ω0)(nB(ω0) + 1)]1/2. It is worth noting that
the single phonon scattering approximation has been already
successfully used in the case of manganite films and bulk [8].
The reason why we can do this is that we have treated the
residual electron–phonon interaction at the lowest order, after
considering the interaction itself at the variational Lang–Firsov
level.

In figures 4 and 5 we show the resistivity obtained by our
approach. Clearly the resistivity exhibits a strong anisotropy
depending whether the current is flowing along the stripes or
perpendicular to them. The resistivity anisotropy is closely
related to the magnetic transition FM �→ MS.

Along the stripes the core spins are all aligned, both in
the FM and MS phases, and the resistivity shows a metallic
behavior very similar to the one expected in the homogeneous
FM phase and observed in thicker films and bulk samples. On
the other hand, along the direction perpendicular to the MS,
where the spins are aligned in the FM phase and anti-aligned

5
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Figure 5. Resistivity versus temperature in the ab-plane for a
ten-layer thick film: ρxx (full line, red) and ρyy (dashed line, green)
corresponding to g = 2 and ε = 0.05ω0 for a fixed value of hopping
amplitude t = 2.2ω0. The resistivity is expressed in units of e2

ah̄ and
T in units of ω0. In the inset the phase diagram (T –t), corresponding
to ten layers, is shown.

in the MS phase, the resistivity jumps at the temperatures
corresponding to the FM �→ MS and MS �→ FM transitions,
respectively. The jumps are related to the different role played
by the double exchange in the FM and MS phases. In the
latter the antiferromagnetic order reduces the double-exchange
effective transfer integral, thus reducing the mobility of the
eg electrons as is evident from equation (8). It should be
noticed here that the abrupt jump could be related to the fact
that disorder effects are not included in our analysis. Actually,
disorder effects are able to smooth first-order transitions. In our
case, therefore, disorder should be able to affect the transition
between the ferromagnetic and MS phase. In any case, it
is important to observe that the size of the jump (around a
factor 2) is in good agreement with the value reported in the
experiments. The reduction of the mobility of the eg electrons
in the MS phase is also confirmed by the insulating behavior
exhibited by the resistivity along the direction perpendicular to
the stripes. This behavior can be explained by the dependence
on temperature of the double-exchange spin factor (5) for
anti-aligned (nn) t2g spin. Indeed, the latter increases as
the temperature increases improving the mobility of the eg

electrons. For this reason the resistivity along such a direction
decreases into the range where the MS solution stabilizes.
Finally, in the range of temperatures where the ferromagnetic
solution stabilizes again, the in-plane components of the
resistivity tensor, along the MS and perpendicular to them,
coincide and start to increase with temperature again.

4. Conclusions

We have analyzed the stability of the magnetic-stripe phases
in thin films of La1−x Ax MnO3 perovskites. A variational
approach previously proposed for manganite bulk and films has
been generalized in order to consider magnetically anisotropic

phases. It is found that a reduction of the eg electron
hopping between nn sites, t , stabilizes a phase characterized
by ferromagnetic planes perpendicular to the substrate with
alternating up and down magnetizations. This phase exhibits
an interesting re-entrant behavior shape into the hopping–
temperature plane determining, for suitable values of hopping,
an interesting sequence of order–order transitions: FM �→ MS
and MS �→ FM. Furthermore, we find that the stability region
moves towards larger values of the hopping amplitude as the
number of the planes increases, reaching saturation at around
100 planes. All these results can have an interesting impact on
a number of experimental results showing a strong anisotropy
in the low-temperature resistivity of very thin films. In fact,
the strain induced by the substrate triggers a decrease of
the lattice parameter that, in turns, suggests a reduction of
the in-plane hopping. This is clearly understood for tensile
strain but experimental data seem to indicate that it is true
also for moderate compressive strain. As a matter of fact,
the calculated resistivity tensor in the ab-plane shows an
important anisotropy and reproduces the broad bump observed
in the experiments at around 100 K. This structure is due
to re-entrant behavior of the MS phase and, therefore, is
triggered by the double-exchange mechanism. Indeed, in the
range of temperatures where MS stabilizes, along the direction
which presents anti-aligned t2g spin, the resistivity decreases as
temperature increases because the double-exchange effective
hopping is reduced. On the other hand, along the direction
parallel to the stripes, the resistivity exhibits the expected
metallic behavior.

It is worth noticing that all the results presented in this
work have been obtained without assuming any extrinsic effect
at the interface with the substrate. It is reasonable to believe
that the possible existence of extrinsic effects can work as a
further stabilizing factor for the MS phase. In the case of very
thin films, the interplay between intrinsic and extrinsic effects
can become stronger, possibly giving rise to more complex
magnetic patterns. The inclusion of the extrinsic effects in
the analysis would require the proper study of the interface
between film and substrate, which, in the present work, is taken
into account in an average way by assuming a reduction of the
in-plane effective electron hopping.

Finally, it is important to note that in our analysis the role
of the double-exchange mechanism is studied at the level of
variational mean-field, which includes the main contribution
needed to stabilize the MS phases. More accurate approaches
should take into account the role of the scattering of electrons
by magnons [23]. This could affect the temperature profile of
the resistivity, but not the anisotropy in different directions.
Work to include magnon scattering in the calculation of the
resistivity of the MS phase is in progress.
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